To: Example Client 123 Example Street Allentown, PA 18106 United States

Referred by:

Dr. Example Physician

Director: Kerry Kocher Brown, Ph.D., FACMG 6575 Snowdrift Road, Suite 106 Allentown, PA 18106 Phone: 484-244-2900

Fax: 484-425-5846

EXTENDED CARRIER SCREENING PANEL

DATE RECEIVED: 1/2/2021	DATE REPORTED: 1/14/2021	DATE COLLECTED: 1/1/2021
Patient Name	DOB	Patient ID #
Example, Patient	2/23/1985	X00123
Test Request	Specimen Type	Your Code
Extended Carrier Screening Panel	Peripheralblood	M1234567

DISORDER:	RESULTS:	INTERPRETATION:
Cystic Fibrosis	POSITIVE CFTR exon 11, c.1521_1523CTT, p.Phe508delheterozygous AR pathogenic variant	Pathogenic variant was detected, consistent with a carrier of cystic fibrosis. Genetic counseling is recommended.
Fragile X Syndrome	NEGATIVE FMR1: c129CGG[29]; [31]	No evidence of abnormal CGG repeat number; Reduced carrier risk for Fragile X or Fragile X associated disorders.
Spinal Muscular Atrophy	NEGATIVE SMN1: 2 copies SMN2: 2 copies	No evidence of abnormal copy number in the SMN1 or SMN2 gene; Reduced carrier risk for SMA.
All other disorders	NEGATIVE	No other pathogenic/likely pathogenic variant was detected. Reduced carrier risk for the other tested disorders.

BACKGROUND

This test is designed to detect carriers of the disorders listed in the Genes Tested section below. These disorders are mostly severe, childhood onset disorders with autosomal recessive or X-linked inheritance. This test is intended for pre/post-conception carrier screening and is not intended for diagnostic testing. Genetic counseling is recommended for interpretation of test results. For additional information, please contact HNL Genomics (CTGT) at 484-244-2900 or visit our website at www.CTGT.net.

CLINICAL INFORMATION

Cystic fibrosis: Cystic fibrosis (CF) is an autosomal recessive disorder of variable severity that affects the pulmonary system, digestive system, and other organ systems. Clinical features of CF include progressive lung disease, pancreatic insufficiency, male infertility, and elevated sweat chloride levels. Severely affected individuals may require lung transplantation and have shortened life expectancies, primarily due to respiratory failure. Other individuals have milder symptoms, including some males in whom the only finding is infertility due to congenital absence of the vas deferens (CAVD). Cystic fibrosis and CAVD are caused by pathogenic variants in the CFTR gene. Individuals with a heterozygous pathogenic variant in CFTR are carriers for cystic fibrosis/CAVD and are at risk of having a child with the disorder. If both reproductive partners are cystic fibrosis carriers, the risk for cystic fibros is in their children is 25%. Cystic fibrosis has a high incidence in non-Hispanic white populations (approximately 1 in 2500 individuals), and a lower prevalence in other ethnic groups. Approximately 70% of CF carriers in non-Hispanic white populations carry the p.Phe508del (deltaF508) pathogenic variant. The American College of Obstetrics and Gynecology (ACOG) recommends offering cystic fibrosis carrier screening to all women who are pregnant or considering pregnancy.

• This test was developed and its performance characteristics determined by HNL Genomics (CTGT). It has not been cleared or approved by the FDA. The FDA has determined that such clearance or approval is not necessary. This test is used for clinical purposes. It should not be regarded as investigational or for research. CTGT is certified under CLIA since 2004.

METHODOLOGY

Next generation sequencing (NGS) and copy number variation analysis (CNV): All coding exons and exon boundaries of the genes on the extended carrier screening panel, plus two intronic CFTR variants (c.1680-886A>G and c.3718-2477C>T), were targeted using the Agilent SureSelect hybridization capture method and were sequenced using an Illumina MiSeq next generation sequencer. Sequences were aligned to the human genome reference build GRCh37/hg19 and variants were called. All exons are routinely covered by at least 40 sequence reads. Due to high homology between gene pairs, variants are not routinely called in SMN1/2 exons 1-6 or HBA2 exon 1. Additionally, the NGS data is used to analyze all coding exons for copy number variations (CNV). CNV detection limit is typically a single exon. This analysis does not detect rearrangements that do not result in copy number variation. Classification of the clinical significance of detected variants is performed based on professional guidelines. Pathogenic and likely pathogenic variants are included in this report. Variants of uncertain significance, likely benign variants, and benign variants are not reported. The CFTR polyT variant (5T, 7T, 9T) is only reported if the Arg117His variant is present on the same allele.

Fragile X repeat analysis: Analysis of the FMR1 gene includes determination of the number of CGG repeats in the 5'UTR of FMR1. The repeat region was amplified using polymerase chain reaction (PCR) with a fluorescence labeled primer and the PCR products were sized by capillary gel electrophoresis. If these results show a repeat number of greater than 44 or a single allele in a female specimen, an additional assay using a CGG repeat-primed PCR method will be performed to verify the repeat number. Reported repeat number may vary by +/- two repeats. The interpretation of Fragile X test results is based on the number of CGG repeats detected, using the following ranges: <45 repeats is Negative, 45-54 repeats is the Intermediate range, 55-200 repeats is a Premutation, and >200 repeats is a Full Mutation.

Spinal muscular atrophy analysis: Analysis of the SMN1 and SMN2 genes includes determination of the number of copies of SMN1 and SMN2 exon 7 and assessment of the presence of the SMN1 c.*3+80T>G SNP (g.27134T>G, see Luo: PMID 23788250). All coding exons and exon boundaries of the SMN1 and SMN2 genes were targeted using the Agilent SureSelect hybridization capture method and were sequenced using an Illumina MiSeq next generation sequencer. Sequences were aligned to the human genome reference build GRCh37/hg19 and copy number was determined by an algorithm which compares the patient sample to a set of reference samples and uses that data to calculate 0, 1, 2, or 3 copies of SMN1 and SMN2 exon 7. Individuals with two or more copies of SMN1 generally have a low carrier risk. The genotype at SMN1 position c.*3+80 was also determined as the presence of a G at this position correlates in certain populations with increased risk of being a silent carrier with two copies of SMN1 on the same allele.

Limitations: Although DNA sequencing, copy number variation analysis, and PCR fragment length analysis are highly sensitive methodologies, mutation detection may not be 100%. Mosaic variants, non-coding/intronic variants, variants in regions/genes not included in this test, and chromosomal rearrangements that do not result in copy number variation may not be detected by this test. The number of copies of SMN1 and SMN2 on each allele is not determined. Additionally, variant classification may change over time as more information becomes available. False positive or false negative results are rare but may occur for various reasons, including but not limited to, pseudogene interference, sex chromosome abnormalities, rare genetic variants interfering with primer binding, unusual allelic configurations, blood transfusions, and bone marrow transplantation. A negative test result reduces, but does not eliminate, the chance that this individual is a carrier for the disorders tested by this panel.

GENES TESTED

Gene	Accession	Disorder	MIM	Inheritance
ACADM	NM 000016	Medium-chain acyl-CoA dehydrogenase deficiency	201450	AR
ARSA	NM 000487	Metachromatic leukodystrophy	250100	AR
ARSB	NM 000046	Mucopolysaccharidosis type VI (Maroteaux-Lamy)	253200	AR
ASPA	NM 000049	Canavan disease	271900	AR
ASS1	NM 000050	Citrullinemia	215700	AR
BCKDHA	NM 000709	Maple syrup urine disease, type Ia	248600	AR
BCKDHB	NM 183050	Maple syrup urine disease, type Ib	248600	AR
BLM (RECQL3)	NM_000057	Bloom syndrome	210900	AR
BTD	NM 000060	Biotinidase deficiency	253260	AR
CFTR	NM_000492	Cystic Fibrosis Congenital bilateral absence of vas deferens	219700 277180	AR AR
DHCR7	NM 001360	Smith-Lemli-Opitz syndrome	270400	AR
DMD	NM_004006	Duchenne muscular dystrophy Becker muscular dystrophy Cardiomyopathy, dilated, 3B	310200 300376 302045	XLR XLR XL
ELP1 (IKBKAP)	NM_003640	Familial dysautonomia	223900	AR

This test was developed and its performance characteristics determined by Connective Tissue Gene Tests. It has not been cleared or
approved by the FDA. The FDA has determined that such clearance or approval is not necessary. This test is used for clinical purposes. It
should not be regarded as investigational or for research. CTGT is certified under CLIA since 2004.

FANCC	NM 000136	Fanconi anemia C	227645	AR
		Fragile X syndrome	300624	XL
FMR1 NM_002024	Fragile X tremor/ataxia syndrome	300623	XL	
	Premature ovarian failure 1	311360	XL	
G6PC	NM 000151	Glycogen storage disease Ia	232200	AR
GAA	NM 000152	Glycogen storage disease II	232300	AR
GALC	NM 000153	Krabbe disease	245200	AR
GALE	NM 000403	Galactose epimerase deficiency	230350	AR
GALK1	NM 000154	Galactokinase deficiency with cataracts	230200	AR
GALT	NM 000155	Galactosemia	230400	AR
GAMT	NM 000156	Cerebral creatine deficiency syndrome 2	612736	AR
GATM	NM 001482	Cerebral creatine deficiency syndrome 3	612718	AR
		Gaucher disease, type I	230800	AR
		Gaucher disease, type II	230900	AR
GBA	NM_001005741	Gaucher disease, type III	231000	AR
		Gaucher disease, type IIIC	231005	AR
		Gaucher disease, perinatal lethal	608013	AR
GLA	NM 000169	Fabry disease	301500	XL
HBA1	NM 000558	Alpha thalassemia	604131	AR
HBA2	NM 000517	Hemoglobin H disease	613978	AR
IIDAZ	TVIVI_000317	Hemoglobin Bart's hydrops fetalis syndrome	236750	AR
HBB	NM 000518	Beta thalassemia	613985	AR
ПББ	NWI_000318	Sickle cell anemia	603903	AR
HEXA	NM 000520	Tay-Sachs disease	272800	AR
HFE	NM 000410	Hemochromatosis	235200	AR
IDS	NM 000202	Mucopolysaccharidosis II	309900	XLR
IDUA NM_000203		Mucopolysaccharidosis Ih	607014	AR
	Mucopolysaccharidosis Ih/s	607015	AR	
		Mucopolysaccharidosis Is	67016	AR
IVD	NM 002225	Isovaleric acidemia	243500	AR
MCOLN1	NM 020533	Mucolipidosis IV	252650	AR
MMACHC	NM 015506	Methylmalonic aciduria with homocystinuria, cblC type	277400	AR
OTC	NM 000531	Ornithine transcarbamylase deficiency	311250	XLR
PAH	NM 000277	Phenylketonuria	261600	AR
PHKA2	NM 000292	Glycogen storage disease, type IXa	306000	XLR
PHKG2	NM 000294	Glycogen storage disease IXc	613027	AR
PKHD1	NM 138694	Polycystic kidney disease 4, with or without hepatic disease	263200	AR
PYGL	NM 002863	Glycogen storage disease VI	232700	AR
SLC37A4	NM 001164277	Glycogen storage disease Ib	232220	AR
BECSTILL	1111_001101277	Glycogen storage disease Ic	232240	AR
SLC6A8	NM 005629	Cerebral creatine deficiency syndrome 1	300352	XLR
SMN1 NM_02287		Spinal muscular atrophy 1	253300	AR
	NM 022874	Spinal muscular atrophy 2	253550	AR
		Spinal muscular atrophy 3	253400	AR
		Spinal muscular atrophy 4	271150	AR
SMN2	NM 022876	Modifier of spinal muscular atrophy	253400	
SMPD1	NM 000543	Niemann-Pick disease, type A	257200	AR
		Niemann-Pick disease, type B	607616	AR
SUMF1	NM 182760	Multiple sulfatase deficiency	272200	AR

For additional information, please contact HNL Genomics (CTGT) at 484-244-2900.

Sincerely yours,

Kerry Kocher Brown, Ph.D., FACMG

This test was developed and its performance characteristics determined by HNL Genomics (CTGT). It has not been cleared o r approved by the FDA. The FDA has determined that such clearance or approval is not necessary. This test is used for clinical purposes. It should not be regarded as investigational or for research. CTGT is certified under CLIA since 2004.